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DYNAMIC SNAP-THROUGH OF AN ELASTIC SHELL SUBJECTED TO A PULSED LOAD* 

L.S. SRUBSHCHIK 

Dynamic instability "in the large" is investigated for an elastic shallow 
shell subjected to a pulsed load (PL) and a more general non-linear 
elastic continuous conservative system with potential energy of the 
"square of the norm plus a weakly continuous functional" kind with 
Rayleigh friction and a given initial velocity. An energy approach /l, 
2/ developed in /3-6/ is used to analyse the dynamic snap-through (DS) 
of the non-linear elastic system subjected to a stationary step load. 
The problem is considered in an exact infinite-dimensional formulation. 
By using the concept of an equilibrium stability trough and reserve /l/, 
definitions are given of the dynamic stability of a system, the critical 
PL of its DS and the astatic critical PL. The latter is determined from 
the stationary problem and yields the lower bound for those PL values 
for which DS occurs. 

It is established that a necessary condition for the DS of a system 
subjected to a PL is the existence of a saddle point of the potential 
energy for the same load-free system at the boundary of a stable zero 
equilibrium trough. It is proved that this necessary condition is 
satisfied for sufficiently thin strictly convex shells of revolution 
with movable and fixed hinge-support as well as for a certain class of 
arbitrary strictly convex shells with a movable hinge support. 

Therefore, the stability reserve has a graphic mechanical meaning 
as an exact upper bound of the kinetic energy which can be added to the 
system at rest so that it does not reach the least saddle points among 
the energy heights leading from a zero equilibrium trough to troughs of 
other equilibria. 

Results of computer calculations of the critical PL of dynamic 
snap-through and astatic snap-through for spherical and conical shells 
are presented. Depending on the boundary conditions, the lower limits 
are determined for the ratio between the shell rise and its thickness, 
for which DS is possible under the action of a PL. 

Note that the reasoning associated with estimating the kinetic 
energy needed to overcome the energy barrier in the problem of DS under 
the action of a PL on a system with two degrees of freedom, obtained by 
the Bubnov-Galerkin method from the vibrations equations for an elastic 
arch, were first applied in /l/. The extensions to finite-dimensional 
models with a large number of degrees of freedom made by different 
authors are reflected in /2, 8, 9/. 

1. On the formulation of the DS problem. In a separable nilbert space H we con- 
sider the vibrations equation of a continuous conservative mechanical system subjected to a 
PL in the presence of a viscous friction force /lo/ 

01: + BJZot + Z'(o)- 0, Z'(o) = gradH Z(o) 

Z(0) = '/,I1 oll'H* - cp(O)l II 0 II’H, = (Aa, o)If 

co I*_o = 0, 0: jr-o = u E a 

ji.1) 

U.2) 

Here 63(t) is an unknown vector-function of time t,Z(o) is the potential energy, ZZ,, is 
the energy space of the selfadjoint positive-definite operator 
functional in EA. 

A, q.(o) is a weaklycontinuous 
The Rayleigh friction is given by a selfadjoint positive-definite operator 

B and the coefficient of friction PO. The functional Z(o) is given in the whole space HA 
and is growing in 0). The work of the external forces does not occur in Z(o) since the PL is 
reduced until the system starts to move and therefore conrmunicates a field of velocities u 
to a system at rest. The properties of the functional Z(o) are established in /6/. 
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Let the point 0,=OEH* correspond to zero stable equilibrium of the system and let 
J(0) be its trough which is defined, according to /7/, as a connected set in H* that 
contains zero and consists of points o satisfying the condition Z(o)<j*. Here j* is the 
upper limit of those energy values j for which the sets {oEH~ : Z(o)(j) containno stable 
equilibria different from zero. By virtue of a theorem in /6/, we obtain that from the 
ambiguity of the zero equilibrium there follows the existence of at least one saddle point 
y ontheboundaryofthe trough J(0). In this case the stability reserve of the zero 
equilibrium /7/ 

Z(O) = Z(Y) - Z(O) (1.3) 

has a graphic mechanical meaning as an exact upper limit of the kinetic energy which can be 
given to the system in the zero position so that it will remain in the trough J(0) for all 

t > 0. 
Many problems of DS undertheactionofaPLareincludedinthe following general scheme. 

Let the initial velocity v = v(U) depend continuously on the PL parameter a, where v (0) = 
0. For the value a, = 0 let the'system be in the zero-th stable equilibrium position and 
at the time t = 0 let the parameter a change abruptly from a, to a'. The question arises 
as to whether the system remains in the trough J(0) or leaves it as time passes. Therefore, 
the situation reduces to investigating the behaviour of the solution of the Cauchy problem 
for system (1.1) with the.initial data 6.1 (0)= 0, of (0) = v (a). If o(t) E J (0) for all t > 0, 
then we will say that there is no DS. If o(t) for a certain t, turns out to be outside the 
trough J (O),then DS occurs. Evidently DS is not possible if wg = 0 is the only equilibrium 
of system (1.1). 

2. Critical PL. The domain of possible motions M. of system (1.1) for &=O is 
determined by the inequality 

'/all 01 llHZ + Z(o) < r/z II VIlH2 -t Z(O) (2.1) 

For a = a0 let the domain M,,(a') satisfy the condition M, (a")CZ J(0). Then there 
is no DS. Let us increase a starting with a'. DS becomes possible for the least value of 
a for which the saddle point in 3J (0) falls in the domain M,(a). 

We determine the critical PL of the DS ad* for the fundamental equilibrium o,=O by 
setting it equal to the upper bound of those values of a for which the motion of system (1.1) 
and (1.2) remainsinthetrough J(0) for all t>o. Therefore, when a exceeds ad* slightly, 
the motion mentioned will emerge fromthetroughoftheequilibrium o0 = 0 at a certain time, 
according to the definition this will indeed be a DS. 

The calculation of ad* involves integration of the non-stationary system (1.1) for dif- 
ferent a in a time segment not determined in advance, which requires a considerable amount 
of computer time. 

Furthermore, we introduce the astatic critical PL a. of the equilibrium w0 = CR as the 
least solution of the equation 

1 (4 = V8 II v (a) II2 + Z (0) 
where CO, is an unstable equilibrium on 8J (0) so that I'(@,) = 0. 

For values of a = a, and a. slightly exceeding a,,, the motion directed along the 
connecting points o0 = 0 and o,,E aJ(O) which is a geodesic and has the initial velocity 
field with norm II v b4lb~ leaves the system from J 6’). Obviously, aa <ad* 
so that the astatic critical PL sets a lower limit for the dynamic load. It can 
be assumed that it is more informative from the practical viewpoint since it is referred to 
the more general initial conditions (instead of the condition o, (O)=v(a) only the energy 
equality II wt (O)ll~ = (( v(a)llH) is required). Meanwhile, the quantity a, is considerably 
easier to calculate in many cases since only stationary problems need be considered for this. 

3. Non-stiffness and DS of elastic shells. The vibrations equations of an 
elastic shallow shell belong to the class of equations of the form (1.1) under consideration 
/6, lo/, and consequently, all our reasoning holds for them. It follows from Sect.2 that the 
necessary condition for a DS of a system subjected to a PL is the existence of a potential 
energy saddle point on the stable zero-th equilibrium trough boundary for the same system with- 
outaload. This conditionisknowntobeviolatedfor stiff mechanical systems for which there 
is only the zero-th equilibrium for no load in conformity with the definition /ll/. For stiff 
systems DS is impossible under the action of a PL for any a. 

We will examine the problem of DS in more detail for elastic shallow shells. It has 
been shown /ll/ that plates of arbitrary shape with natural homogeneous boundary conditions, 

as well as shells with a thickness having a definite lower limit, are stiff. Astherelative 

thin-walledness diminishes, a shell can lose it stiffness, i.e., have different equilibrium 

modes from the unstressed one when there is no load. It is well-known /ll-13/ that suf- 

ficiently thin strictly convex shells with ahingesupport lack stiffness, and in order to 
establish the possibility of DS under the action of a PL for them it is necessary to prove 



the existence of at least one potential energy saddle point of such a shell when there is no 
load. 

We will write the system of equilibrium equations of a thin elastic strictly convex 
unstressed shell S with moving hinge support in the form 

tPAaF + Y, Iw,wl - fz,wl = 0 (3.1) 

eaAsw - [w -z,Fj = 0, z\~ = 0 

IwFl==ccJz,, -f-~a,Fxx-2wzy~rv 

[F=F,=ul]r=O, rlw=[wpp-- Yxlw.p]~=o !(3.2) 

The dimensionless quantities in (3.1) and (3.2) are related by the dimensional formulas 
/f3/ 

{W, s, 21, Y,, s* r* x,') = a {wu, 2, I, Y, p, s, xi-'} 

Q = Ea%‘F, F? = h/(q), yp = 12 (i - 9) 

Here W is the deflection, Q, is the Airy stress function, Xl? !A are rectangular 
Cartesian coordinates, a isthecharacteristic dimension of a simply-connected strictlyconvex 
domain D which the shell with middle surface S occupies in planform. The small parameter sa 
is the shell relative thin-walledness, h is the thickness, Y is Poisson's ratio, and n,r,xO 
are the internal normal, the arclength, the curvature of the contour I' bounding the domain 
D. For any r,.@Ef) + I' the surface s satisfies the condition 

z,,ms - 2zxymn + zvunB < -fi (ma + na), Vm, n F R (3.3) 

where fl is a certain positive constant. 
Together with the zero-th equilibrium F=w= 0 problem (3.1) and (3.2) can have an 

equilibrium v, = (F,,w,) close to a symmetrically reflected one as e-+0 and the following 
asymptotic expansions V, = (F,,w,) hold fox it 113,': 

E; - Fe = s* (sl + P), ut* - w. = 22 -f- 9 (sq + 20”) (3.4) 

h ,=-CC,s-x'sin(ht+$), g,=-CC,e+sin(ht-+) 

C, = 1/2 [21, - h-%pp (s)l; La = ‘/*x,2, (s) > 0, s Es r 

The functions Ftand u+ are obained by direct expansion of the solution in powers of 8 
as a result of the first iteration process. The boundary layer functions hi* g: which are 
determined in the second iteration process /13-15/ compensate their residual in satisfying 
the boundary conditions on r. The smoothing function q(n) equal unity for q q p6-1 <r/e 
and zero for rl > Bls, where 6 is the band width in which the internal normals to r do not 
intersect. In order for the vector-function V, to satisfy all the boundary conditions exactly 
on r, components of the order of en and en+l are appended with arbitrary sufficiently smooth 
functions T~, Y*, ys satisfying the boundary conditions 

ia = Y% + $3, = Y* fh, = Ys,pfr = 0 

rl (Yl + %) = %&L, Lo; F,Yn = 0 

We will consider problem (3.1) and (3.2) as an operator equation P(V)=O. Here 
v = Q,d and the operator P: X+Y, where the space Y consists of the vector-function 

f = @I. f*)- with the finite norm 

II fill%= li fi II'+- n f, Ii*= s VI* -t- f,*)~dY 
1) 

and the space X is the closure of the sets of smooth vector-functions V = (F, W) with finite 
norm 

that satisfy (3.2). 



Theorem 1. Let 2 (S) satisfy the condition 

- l%~(~i~p)~~lr <'/*(I - Q)(l + e-"))' - v (3.5) 

for any SIC! r, where no is an arbitrarily small positive number. Then for E<< i problem 
(3.1)-(3.3) has the solution V,with asymptotic form V,, where 

max IF, -Fe1 $ max Itie -u+I<m,cn+*, nz2;3;. . . (3.6) 
D+r D+r 

mex 1 D(k) (F, - F,) 1 + max 1 II(k) (we - we) I< rtzlen++k 
D+r Jl+r 

The solution V+ realizes the local minimum potential energy of the shell. 
(Here and everywhere henceforth, mi and ci are positive constants independent of a. 

The symbol D(k) denotes any partial derivative of order k == 1.2.) 

Proof. We consider the system of equations 

Pit (I') -= 1, V A (F, LL.) Is x. f = (I,. f,) E Y, P;, (I') E 

(E*A*F + [I wl + e' [I f -i UP, w] a'A'r0 - [r, F] - 
E' lb* 4 UP,' F] - a* [II -t P, "1; 

with boundary conditions (3.2). Here PI e istheFrechet derivative of the operator P on the 
element V,. 

We multiply 
Integrating over 

the first equation of the system by F+ 6% and the second by w - e"F 
the domain D and combining, we obtain 

E~~~AF~+E~~~~,~'+P~~ x,wp' ds - E?‘= S AFwp ds - L= (s, + F’, u), w) -+ r r 
ea (z, IL, w) + ea (2. F, F) +E*+= {(~a + vO, w, w) + (SI -t- F”, w, F) + 
(s, + w’, F, F)) = 5 (11 (F + e=w) + 1s (w - e=F)} dr du 

D 

(a, b, c) = 5 [a, b] c dz dy = 5 D [b, cl dr dy 
D 

1 wb"= 5 (::,+ w;, I- 2w$dzdl/; 8.u = kb+(D) 

u 

Applying the reasoning of Lemma 4.3 in /13/, we arrive at the following conclusion. If 
for eel, i <a<2 and a certain number nO(O<~O<i) the inequality 

(i - 'b)e'[I~b'+ v 1 x,w; ds]- e’s (~I+~)[~‘rP]drdy+e”~~F~(P>O (3.7) 
r D 

holds for any function IE Wt"' with the boundary conditions LUIr= f,w=O, then the following 

estimate holds: 
II rp,J-‘u(,_,) < w* 

By virtue of (3.4) we have r,+FO=h,+F,+O(e) and it is sufficient to prove satisfac- 
tion of (3.7) with (t,+ P) replaced by (h,+ F,). The function F, is found from the boundary 
value problem /13/ 

[t, Fz] = 2A4, Fair= - A,IP=2[~--r,, (yJ1lr (3.8) 

We will represent F, inthe form 

F, = F,, + G, lz, F,,l = 0, F,@ Ip = -h, 1,. 
11. G] = 2A'z, G 1,. = 0 

Applying (3.8) and integrating by parts, we obtain 

I (‘Q + F,ov 

1 (G, w, w) 1 = , ;(G~iM:+~v;: :2:;:;;,'::dy, < 

(3.9) 

This latter inequality results from the maximum principle for homogeneous elliptic 
equations and (3.4) and (3.8). NOW (3.7) follows from (3.5) and (3.9). The existence of 
the solution V, with the asymptotic form V, and the estimate (3.6) for the remainder term 
is obtained from Theorem 4.1 in /13/ and the estimates 
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I p (V,) By d w”* u p, ” U(_+(X4Y)) < -a 

(here the misprints made in (2.11), (4.9), (4.11), and (4.14) in /13/ have been corrected). 
Let us prove the stability of V,. The solution of the boundary value problem (3.1) and 

(3.2) is the critical point of the functional 

{(Alo)*-(I-v)[~t,~]+(AFP)dl dy 
D 

proportional to the shell potential energy when there is no load. The function Fisdetermined 
uniquely from the solution of the first equation in (3.2) for a given w E W,(a) with the 
boundary conditions WI,.= T,w= 0. 

Evaluating the second variation of the functional in the solution V,= (F,, I+), we have 

/16/ 

%(m*) =f(aGS+v 
s. ) 
xltlp*ds +~*llA(~lP+ (F,,cl,rl) (3.11) 

Here q is an allowable variation of w,and cp is an allowable variation of F and is 
determined from the boundary value problem 

e'A*v + IQ - 2, ql = 0, cp Ir = ‘pp Ir = 0 (3.12) 

Multiplying (3.12) by E% and integrating over the domain D, we obtain, taking (3.4) 
into account, 

Hy using the inequalities 

for l<a<2, we deduce from (3.11) and (3.13) 

(3.13) 

(3.14) 

Applying the reasoning performed in deriving (4.18) in /13/, and taking account of the 
estimate (3.6), we have 

A% = fo, 'P Ir = ep ir = 0 (3.15) 

fO = -e-'{Iz, J -I- e* Is, + 3, rll + ]w. - wE. ql) 

Ufoll<mre-sUrlB, ~IIrl~~lI~~~u-Gll~bJ 

mzF I 84 I < ma (I;& II + II tl IM 

1SeA~~~drlgs(llY_tlde~+nA~p+v~al,’ds) 
r 

Now applying (3.3)-(3.9) and (3.15), and assuming B to be so small that the inequalities 
S'C6 ( V,o~6=/3, 6=-5, j I/,, 6%, ( '/I, ?6, = "I&, 8, + W* 1 are satisfied for l<a<2, we obtain from 
(3.14) 

~~*(~.)>~(l--)(I1V+V 
s 
x@&+llA~P)+ 

+~~BIvsrP>o 

Therefore, the second variation ofthepotential energy is a positive-definite mode and 
by virtue of /16/ the solution V, with the asymptotic form V, corresponds to stable 
equilibrium. 
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Theorem 2. For sufficiently small E problem (3.1)-(3.3), (3.5) together with the stable 
zero-th equilibrium and stable equilibrium V*close to the symmetrically reflected one, there 
is at least one unstable equilibrium corresponding to the saddle-point of the shell potential 
energy. 

Proof. The functional I, in (3.10) satisfies the conditions of Sect.1 in /6/. The 
stability of the zero-th equilibrium for all E>O is easily obtained from (3.11) for IL', : 
F,= 0 by virtue of /16/. Now, the assertion formulated results from Theorems 2.1 and 2.2 
in /6/. 

We are interested in the problem of giving a foundation for the asymptotic form without 
the constraining condition (3.5) on the equation of the surface z. This conditionis obviously 
not related to the substance of the matter and it is understood the asymptotic expansions 
(3.4) can be used as e-0 to compute the above-mentioned non-trivial equilibrium V. of an 
arbitrary shallow strictly convex shell with a moving hinge support. 

For an unloaded shell with fixed hinge support the system of equilibrium equations is 
written in the form (3.1) with the boundary conditions 

[w== wpp -- YXIWp = F,, +vxlFp-- YF,,]r=O 

'Z[Fppp + 3X1F,,+ (2+v)FPsa -I (Z+v) %I,sFJ - 

For equilibrium close to the symmetrically reflected equilibrium V,= (F,,u*) of a strictly 
convex shell, asymptotic representations are constructed here as e-0 

F, - E*A,A%-“t cos At, W. - 1 (2, g) + E~A~L-%-~* sin ht, 

ha = +x+ (8) > 0, stzr 

A, = bpp - WC&~, x1 = x1 (s) > 0, t = pe-’ 

There is no foundation for the asymptotic form in this case since there is an error in 
Lemma 1 in /17/. 

Assuming axisymmetric strain of shells of revolution, (3.1) reduces to the system 

E~AU - ‘l,u2 + 0u = 0, eeAu 3_ uv - 8u = 0 

A ( ) = -r ( )” - ( )’ + r-l ( ), u = F’, w = u’ 

9 = h/(q), 8 = z’ < --fir, p > 0, ( )’ = d ( )/dr 

Here a is the radius of the shell reference outline. 
Consider system (3.16) together with the boundary conditions 

1) (p,$J,,<% u(l)=O, Mu=[U'+YU]r=*=O 

2) IfJ,,,<~9 NV = [v'- VV]~,~= 0, Mu=0 

that correspond to moving and fixed hinge support. 
The asymptotic expansions as e-0 for an equilibrium v, = (u*,u+) close to the 

metrically reflected one are constructed in the form /12, 13/ 

u* - 0, = e (sa + WY), U+ G us = e (sr + eu") + 26 

u”= 5 ei-Ut (r) + en-lyLVs (r), V, = (v., uc) 
i=a 

1) h, = 2K sin bt, g, = -2K cos bt, t = (I - d/e 

2) h, = PK sin (bt + n/4), g, = v/zK sin (bt - n/4) 

K = [dO/dr + vO],=,b-‘e-“‘, b = +-%e (1) 

(3.16) 

(3.17) 

SP- 

(3.18) 
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The functions v,,u,,hi.gi are found as a result of the first and second iteration pro- 
cesses /12-15/, while the functions af, Bf compensate the residue of exponential order of 
smallness in s for hl ,gl to zero. In order for the vector function V, to satisfy all the 
boundary conditions exactly, components of the order en+' are appended with the arbitrary 
sufficiently smooth functions Y1* Yz satisfying the boundary conditions 

y, (0) = v,(O) = 0, My, = -vg,+1 IL=0 

I) y1 [,=r = --h,+, l+o, 2) NY, = vh,+~L=o 

Theorem 3. Boundary conditions (3.16) and (3.17) for sufficiently small e, together with 
the stable zero-th equilibrium and the stable equilibrium close to the symmetrically reflected 
one, have at least one unstable equilibrium corresonding to the saddle-point of the potential 
energy. 

Theexistence of a non-trivial solution V,with asymptotic form V, and the estimate mar 
1 0. - “, 1 + max 1 “* - llc 1 $ m*t P+’ where the maximum is taken for O<r<i, were proved in /12, 
13/. 

We will prove the stability of the solution V,. We introduce the Hilbert space HI, the 
closure of the sets of doubly continuously differentiable functions in IO,il* that satisfy 
the boundary conditions for u in (3.17) with a finite norm generated by the scalar product 

The solution VS is the critical point of the functional 

proportional to the potential energy of a shell of revolution when there is no load. Here 
the function v is uniquely defined for a given u E If, from the solutionofthe first equation 

,0+"'- ~VCV' dr I 1 (3.19) 

in (3.16) with appropriate boundary conditions for v in (3.17). 
We have for the second variation of the functional in V, 

(3.20) 

Here n is an allowable variation of the function u and 9 is determined fromtheboundary 
value problem 

a'Acp + (9 - u.)n = 0, I v-’ Im<=J (3.21) 
i) cp (I)= 0,2) I?'- VI, = 0 

Multiplying (3.21) by son integrating between 0 and 1, and using (3.18), we have in 
case 2) in (3.17) 

I 1 

E.NQ 
S( 

rp’q’+fm!dr-~*“l(l,~(r)-e=S~dr- (3.22) 
0 0 

1 

cl+= 
s 

(I~+FU~) rl'dr = e= i ((I.- v,)n'dr 
0 0 

Using the obvious inequalities 

4 - 8 (I, + tu") 2 '/*B' > 0, '/,c' > e*+= 

as well as (3.17) and (3.22), we obtain from (3.20) 

(3.23) 



Setting O<a< i and using the inequalities 

p > 0. E" < E?+x, v'C* (1) < I/* ;I ‘p 1,’ ‘:&?r - e (sl + ES) >, ‘:*pe=r 

and the estimate for vs -- Ve, we derive the positive-definiteness of the second variation 
from (3.23) 

VI, (u,) ;a x/16 

Now the stability of V, in the class of axisymmetric functions for problem (3.16) and 

2) in (3.17) results from /16/. 

In the case of the boundary conditions 1) in (3.17) we obtain (3.22) butwith YE~+=,,(~)v(I) 

replacing &*+al) (I&' (1). To estimate this component, we multiply (3.21) by r@(r), integrate 
between 0 and 1 taking the condition v(i)=-- 0 into account, and apply the Cauchy inequality. 
We consequently obtain 

(3.24) 

In the same as when deriving (3.23) by applying the inequality (4.31) in /13/ for u=T), 
formulas (3.24) for i<a<2,0<6<2--a and the estimate for "* - v* in the case of suf- 
ficiently small e. we obtain from (3.20) for m(l)= 0 

(u. - ue) -- e’= (u. - u,)) 11’ dr > xi8 > 0 

The stability of c's in the class of axisynmietric functions therefore results for problem 
(3.16) and 1) in (3.17). 

Stability of the zero-th equilibrium for all E>O is obtained from (3.20) for IL.= 
v,= 0. The existence of a saddle-point of the functional I, is established by using Theorems 
2.1 and 2.2 in /6/ and the factproved earlier /6, lO/ that I, is representable in the form 
(1.1) since the last integral in (3.19) is a weakly continuous functional in H,. 

4. DS of spherical and conical shells. The problem of the DS of shallow spherical 
and conical shells subjected to a uniformly distributed external pressure pulse is written 
in dimensionless variables in the form 

UTT + Jo'(w) = 0. w (0) = 0, W, (0) = 4a (4.1) 

A 

s 2pxW dx. LJ = w,, I,(w) = I, (w, p) lPzc, 

u:ll:,=lio,~=~ [ ZU,’ + -+ U’ + 2vuq dx 

u! II_,+ = IU, + vU/zl,* = 0, v = ‘I2 

1) @=.‘{y-“d+(+U2-tW)dq 

2) 0 = z-:T (5) + A-’ (1 + v)(l - v)_‘T (A)t 

(4.2) 
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Here II is a Hilbert space ofthefunctions in IO, A], square summable with weight z, and 
HA is the energy space of the operator A = V'. The dimensionless and dimensional quantities 
are related by the formulas 

A' = 4 I3 (1 - v*)Ph&'. 2who = AaW 

a% = 2ho (E/m)‘M, W 11X0 = 0, Wtlrxo = b 

3 (1 - v’)A’a’I = 2nh,‘hSEIo, az = rA 

16a = b (Aalh,)*(m/E)“~, qop = X*4 

q. = 32Eh,,ahA-za-‘, b’ = const 

Here W (r, t) is the deflection at the time t at a point with polar coordinate r. a 
is the radius of the reference contour, h is the thickness, m is the shell mass per unit 
volume, E is Young's modulus, and I is the shell potential energy under the uniform external 
pressure X'. For a spherical shell I- = 0 and ho is the rise, while for a conical shell 
8,=-A and ho is half the altitude at the apex. The stress function @ is written in the 
form 1) and 2) in (4.21, respectively, in the case of a moving and fixed hinge support. 

It follows from numerical calculations of the stationary problem by using the alignment 
and matrix factorization methods /17/ for closed framing and free clamping of the edge for 
A< 20, that stiffness of the spherical shell occurs /19/. For a moving hinge support and 

fixed hinge support of the edge for A >5,535 and Aa3.25, respectively, the spherical 
shell has at least one non-zero saddle equilibrium in the absence of a load. 

Figs.l-5 show graphs of the potential energy of spherical and conical shells under a 
uniform external pressure, where E, = IO-V, (w’, p), and I,’ (w+, p) = 0. 

The graphs in Fig.1 refer to a spherical shell with moving hinge support: the dashed 
line is for A = 5.75 in the right upper corner, and the solid line in the centre for 
A = 10. When there is no lead (p - 0) there are two mn-trivial solutions for A = 5.75 and 
ten for A = 10. Note that part ofthegraph for A = 10 has been represented earlier in 
/18/. In the case of a,.spherical shell with fixed hinge support we obtain two and six non- 
trivial solutions, respectively, together with the zero-th solution for p = 0 from analogous 
graphs in Fig.2 represented by dashed lines for A = 3.25 and solid lines for A = 5. 

Fig.1 Fig.2 

Fig.3 

-5 

Fig.4 

Numerical computations for a shallow conical shell show that loss of stiffness occurs 
for A > AI* = 5.25; A > A,* = 2.75, A 2 AR* = 6 respectively, for the moving hinge support, 
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fixed hinge support, and free clamping of the edge. No non-trivial solutions are found for 
closed framing of the edge for p = O.Graphs of the potential energy are represented for 
conical shells in Fig.3 for the case of a moving hinge support with :1 .= ci and in Fig.4 
for a fixed hinge support with ;\ -: 7, and in Fig.5 for free clamping of the edge with ‘1 .- 8. 

We will now calculate the astatic critical impulse a,. To determine it from (2.2) in 
the case (4.1) we obtain the system 

1, (wa) = 4a*A*, I,' (I('") = 0, I (0) = 0 (4.3) 

where u'~ is unstable equilibrium. Let & be a set of solutions of system (4.3) arranged in 
the form of a non-decreasing sequence of numbers al (i = 1,2,..,n). It is evident that a, E Ho, 
and aI < aa. If the set B, consists of one point, then a,= a,. If i>l, thenadifficulty 
arises in extracting those saddles that belong to the boundary of the well U(0). Only the 
solution of the non-stationary problem (4.1) and (4.2) yields a guarantee that the saddle 
would belong to U(O), 

Below we show the two least values from the set B, for a spherical shell with a moving 
and fixed hinge support of the edge, respectively 

A 5.535 5.75 6.75 8 9 10 
IOikZ, 61.8 63.8 74.5 88.3 99 109 
I Ooa, -- 88.4 105 116 126 
lad 73 76 95 111 122 132 

A 3.25 3.94 5 6 7 8 

Kma, 69.3 83 9Y.3 114 127 139 

100al - Y6.7 116 131 143 155 

lmd 77.3 - 132 150 169 182 

Values of 11 are given for which B, consists of one element a, = al. In the remaining 
cases we obtain that a, = a2, where a, is on the branch of the unstable solutions having a 
common point with the stable precritical equilibriums for p equal to the upper critical load 

Pu. 
The critical DS pulse ad was evaluated by direct numerical integration of problems (4.1! 

and (4.2) for different a by using an implicit finite-difference scheme and the Budyansky- 
Roth criterion. 

Fig.5 Fig.6 

Formulation of this criterion for this case reduces to the following. Let 

Its curve P(T) and the pint p,,,(a) correspond to each value of a. The critical impulse 
ad of a shell axisymmetric DS is defined as the least value of Q, for which the curve Pm (a) 
has a jumplike change. This method was used earlier /19/ in order to show that there is no 
DS for spherical shells with closed framing of the edge subjected to a PL. In the calculations 
itwasassumedtbat T= 566 

Fig.6 shows graphs of pm(a) for a moving hinge support with A = 5.75 (curve 1) and a 
fixed hinge support with h = 5 (curve 2). The corresponding values of a,, are represented 
above. 

We will give some examples of values calculated by (4.3) for a conical shell for the 
above-mentioned boundary conditions and valuesof A,*: a.(A,*) = 1.197; a,(&*) = 0.987: a, (A,*) = 
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1.69. 

5. Initially loaded shells. Let I = I(m,p) depend on the load parameter p and let 
m,(p) be the family of stable equilibria of the system (l.l), pE [O,p,), where p,,is the 
upper critical load of static buckling. The system is first subjected to quasistatic loading 
and is consequently in equilibrium oO= ~,@a) corresponding to the value po. Then, an 
additional PL is applied to the system! and is reduced until the system starts to move, and 
therefore communicates the velocity v0 toit. In this case the astatic critical PL a, of the 
equilibrium o, is determined as the least solution of the equation 

where co,, is unstable equilibrium on the boundary of the well aJ (a,). 
Obviously, the DS of a system subjected to a PL is possible if po >p~, where pl is the 

lower critical load of static buckling. 
As an example, we consider a spherical shell with closed framing of the edge for A= 5, 

which is in equilibrium under the action of a hydrostatic load corresponding to po = 0.30. 
At the time t= 0 a uniformly distributed external PL that communicates a velocity W', ltzo = b 
to the shell, is applied to the surface. We obtain as a result of calculations by means of 
(4.1) that 1, (tuO,po) = -2.42 and I,(%,&,)= 10.59. We hence find a, = 0.38 by using (5.1). 

The author is grateful to V.I. Yudovich for his interest. 
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